

Ball Screw Support Bearings

13. Ball Screw Support Bearings CONTENTS

à

9

13. Ball Screw Support Bearings	78 ~ 297
① Angular contact thrust ball bearing 2A-BST	278
② Duplex angular contact ball bearing HT	281
${\mathfrak 3}$ Needle roller bearing with double-row thrust needle roller bearing AXN \ldots	281
Needle roller bearing with double-row thrust cylindrical roller bearing ARN	281
④ Bearing number	282
5 Bearing precision	283
6 Basic preload and axial rigidity	286
⑦ Fit and squareness of shoulders of shaft and housing	287
8 Applications	287
9 Starting torque of 2A-BST type	288
10 Recommended specifications of lubrication	288
1) Dimensiontable	
Angular contact thrust ball bearing	
2A-BST type	290
2A-BST LXL type	290
Duplex angular contact ball bearing HT type	292
Needle roller bearing with double-row thrust needle roller bearing	
AXN type, ARN type	294

13. Ball Screw Support Bearings

NTN ballscrew bearings are optimized to support a ballscrew. These bearings are categorized as shown in **Table 13.1**.

Table 13.1 Bearing types

Type code	Notes	Bore dia	meter
2A-BST	Open type thrust angular contact ball bearing with 60° contact angle, lubricated with grease, normally	17~	60
2A-BST LXL/588	Grease-lubricated sealed angular contact ball bearing with 60° contact angle	17~	60
нт	Duplex angular contact ball bearing with 30° contact angle, lubricated with grease, normally	6~	40
AXN	Needle roller bearing with double-direction thrust needle roller bearing, lubricated with oil, normally	20 ~	50
ARN	Needle roller bearing with double-direction thrust cylindrical roller bearing, lubricated with oil, normally	20 ~	70

① Angular contact thrust ball bearing 2A-BST-1B (LXL/L588)

Because balls are used as the rolling elements, the starting torque of a angular contact thrust ball bearing is less than that of a roller bearing. The 2A-BST type incorporates the maximum possible number of small balls (compared with those of a standard bearing), has thicker inner and outer rings and a larger contact angle of 60°. Thus, this type of bearing boasts greater axial rigidity.

Open type (2A-BST type) and light-contact seal type (2A-BST LXL type) are available for these bearings, and resin molding cages are adopted for all of them.

All the side faces of the BST type bearing have been flush-ground to provide the same face height difference for both the front and back faces. As a result, bearings of the same bearing number can be freely combined into DF, DFT or DTFT configurations as illustrated in **Fig. 13.2**, and the adjustment for a relevant preload is no longer necessary.

Each single bearing has been machined to have the same face height so that when any arrangement is installed on a ballscrew, the optimal preload is exerted. For this reason, no time-consuming preload adjustment (adjustment with shims, or tightening and loosening while measuring the starting torque) is necessary.

Features

- Unique surface modification technique against bearing rings allows drastic improvement in resistance against rolling contact fatigue, leading to longer service life (approximately two times, compared to the conventional type).
- 2. Seals are provided for both sides of a bearing to enhance the performance of rust prevention and preservation of grease. (Light-contact seal type)

- 3. Long-life special grease is used. (Light-contact seal type)
- Unique surface modification technique against bearing rings and special grease reduce fretting (1/5 or less for sliding mode, 1/10 or less for rolling mode, compared to the conventional type). (Light-contact seal type)
- 5. This grease-packed type bearing eliminates further grease packing and allows easier handling. (Light-contact seal type)

Fig. 13.2 Bearing arrangement

Easy handling

The grease-lubricated sealed angular contact ball bearings(2A-BST LXL type) eliminate necessity for grease filling, since they have been packed with grease in advance. You should only wipe rust preventive oil away from them before use. Seals in different colors are used for the front and back sides.

The front side (black) and back side (orange) can be identified by the color of a seal, and you can easily check assembling direction.

Performance test

Unique surface modification technique against bearing rings and special grease are used for ball screw supporting thrust angular contact ball bearings in order to lengthen the service life and enhance the resistance against fretting.

(1) Fretting resistance test in sliding mode

Resistance against fretting the sliding mode should be tested in the fretting corrosion test. Conceptual drawing of the test is shown in **Fig. 13.3**, and the test conditions are shown in **Table 13.3**. In this test, a fixed ball is pushed against a plate, and reciprocated horizontal sliding is carried out against the plate for the fixed period. Worn volume of ball after the test and worn plate depth are shown in **Fig. 13.4**.

Thanking to unique surface modification technique against plate and special grease (light-contact seal type), amount of wear is reduced to 1/5 or less, compared to the conventional type (Plate material: SUJ2, Grease: Lithium base general-purpose grease). (**Fig. 13.4**)

Fig. 13.3 Conceptual drawing of test

Table 13.3 Test conditions

	Dioto	Conventional type (SUJ2 without surface modification)						
Material	Flate	ULTAGE series (SUJ2 with surface modification)						
	Ball	SUJ2						
Load (N)		98						
Max. contact surface pre	essure (MPa)	2560						
Loading frequency (× 10 ⁵ cycle)	Test time: 8 h						
Sliding cycle (Hz)		30						
Amplitude (mm)		0.47						
Lubrication		Grease						
Atmosphere		Room temperature, in atmosphere						

Fig. 13.4 Ratio of fretting corrosion in sliding mode

(2) Fretting corrosion test in rolling mode

Resistance against fretting in the rolling mode should be tested in the rotating and oscillating type fretting corrosion test. Conceptual drawing of the test is **Fig. 13.5**, and the test conditions are shown in Table 13-4. In this test, a housing bearing plate is fixed, and the shaft bearing plate is oscillated. Result of measured decrease in the weight of the bearing plate after the test is shown in **Fig. 13.6**.

Thanking to the synergetic effect of unique surface modification technique against plate and special grease (light-contact seal type), amount of wear is reduced to 1/10 or less, compared to the conventional type (Material of bearing ring: SUJ2, Grease: Lithium base general-purpose grease) (**Fig. 13.6**).

Fig. 13.5 Test conception figure

Table 13.4 Conceptual drawing of test

Bearing (mm)	Evaluated with thrust ball bearing 51204 ($20 \times 40 \times 14$)
Load (kN)	2.5
Max. contact surface pressure (MPa)	1700
Test time (h)	8
Oscillating cycle (Hz)	30
Oscillating angle (deg)	12
Lubrication	Grease
Atmosphere	Room temperature, atmosphere

Fig. 13.6 Ratio of fretting corrosion in sliding mode

(3) Rolling contact fatigue life test

Thanking to modification to surface, resistance against rolling contact fatigue is improved, leading to longer service life, compared to the standard heattreated type model, both for clean oil and oil mixed with foreign matters. (**Fig. 13.7**)

Table 13.5 Test conditions

Bearing (mm)	Evaluated with deep groove ball bearing 6206 ($30 \times 62 \times 16$)
Radial load (kN)	6.86
Shaft speed (min-1)	2000
Lubrication	VG56 turbine oil
Atmosphere temperature (°C)	60

Fig. 13.7 Ratio of rolling contact fatigue depending on modification to surface

(4) Grease life test

Service life of grease has been dramatically extended, compared to lithium base general purpose grease (**Fig. 13.8**).

(Special grease is packed only for light-contact seal type.)

Table 13.6 Test conditions

Bearing (mm)	Evaluated with deep groove ball bearing 6204 (20 × 47 × 14)
Radial load (N)	67
Axial load (N)	67
Shaft speed (min-1)	10000
Atmosphere temperature (°C)	150

Fig. 13.8 Grease life ratio

(5) Grease leakage evaluation test

Double side light-contact type seals eliminate grease leakage from the inside of a bearing. (Fig. 13.9)

Table 13.7 Test conditions

Bearing (mm)	2A-BST40 × 72-1BDFP4 (40 × 72 × 15)
Axial load (kN)	3.9
Shaft speed (min-1)	1000,2000,3000 running for two hours for each step
Atmosphere	Room temperature

Fig. 13.9 Leaked grease quantity

② Duplex angular contact ball bearing HT

The HT type duplex angular contact ball bearing features larger allowable axial loads, although it has the same dimensions as the standard angular contact ball bearing (contact angle: 30°). Bearings smaller than the BST type are available for use in small products.

Fig. 13.10 HT

③ Needle roller bearing with double-row thrust needle roller bearing AXN Needle roller bearing with double-row thrust cylindrical roller bearing ARN

The AXN or ARN type bearing has thrust needle roller bearings or thrust cylindrical roller bearings on both sides of the radial needle roller bearing. The outer ring side of the radial needle roller bearing is used as the raceway of either bearing above. These bearings can withstand axial loads in both directions, in spite of their compact designs. Since the needle roller bearings are used for these types for radial loads, they can withstand heavy loads, and are suitable for purposes of radial heavy loads.

In the AXN type, axial rigidity is extremely enhanced, since the thrust needle roller bearings are used for axial loads.

In the ARN type, rigidity is extremely enhanced, since the thrust cylindrical roller bearings are used for axial loads. Since the axial load capacity of this type is larger than the AXN type, this type is suitable for purposes of axial heavy loads. Oil lubrication is recommended for this type.

Fig. 13.11 AXN

Fig. 13.12 ARN

④ Bearing number

The bearing number of a ballscrew bearing comprises of a type code, dimension code, and suffix. The bearing number of a ballscrew bearing comprises of a type code, dimension code, and suffix.

Bearing number of 2A-BST type

Bearing number of HT type

Bearing number of AXN and ARN type

5 Bearing precision

The precision of ballscrew bearings varies depending on the bearing type.

• 2A-BST type

NTN class 5 (tolerance class code P5), class 4 (tolerance class code P4) and grade UP (tolerance class code UP), each complying with JIS standards, are available. The classes are listed in ascending order.

70HT type

Same precision as the main spindle angular contact ball bearing. Classes 5 and 4 are available.

AXN, ARN types

Meet NTN standard classes 4 and 5, complying with the JIS standards.

Accuracies of 2A-BST type

Table 13.8 Inner rings

Table 1	13.8 Ir	nner rings				able 13.8 Inner rings Unit: µ														
Nomina	al bore	Single plane mean bore	Width variation	Radial runout	Face runout	Axial runout	Width deviation													
ciant C	1	Δd mp	VBs	Kia	Sd	Sia	$\Delta B_{\rm S}$													
m over	m incl.	Class 5 Class 4 [●] Class UP [●] high low high low high low	Class 5 Class 4 Class UP max	Class 5 Class 4 Class UP high low high low high low																
10	18	0 - 5 0 - 4 0 - 3.5	5 2.5 2	3.5 3 2	7 3 2	5 3 2	0 - 120 0 - 120 0 - 100													
18	30	0 - 6 0 - 5 0 - 3.5	5 2.5 2	4 3 2	8 4 3	5 3 2	0 - 120 0 - 120 0 - 100													
30	50	0 - 8 0 - 6 0 - 5	532	5 4 3	8 4 3	6 3 2	0 - 120 0 - 120 0 - 100													
50	80	0 - 9 0 - 7 0 - 5	643	5 4 4	8 5 4	7 4 3	0 - 150 0 - 150 0 - 150													

• The tolerance of outside diameter deviation Δ_{db} applicable to classes 4 and UP is the same as the tolerance of single plane mean outside diameter deviation Δ_{dmp}.

Table 13.9 Outer rings

		•										onaμm	
Nomina	al bore	Single plane mean outside	Width var	ation	Rad	dial ru	nout	Outside surface			Axial runout	Width deviation	
ulam			L/C			V			Cintan	JII	C	10	
6	1	Δ <i>D</i> mp	VCs		Kea			SD		Sea	ΔCs		
m	m	Class 5 Class 4 Class UP	Class 5 Class 4	Class UP	Class 5	Class 4	Class UP	Class 5	Class 4 (Class UP	All classes	All classes	
over	incl.	high low high low high low	max			max			max				
30	50	0 - 7 0 - 6 0 - 5	5 2.5	2	7	5	4	8	4	3	Identical to Si	Identical to ΔB s	
50	80	0 - 9 0 - 7 0 - 5	63	2	8	5	4	8	4	3	relative to <i>d</i> on the same bearing.	relative to d on the same bearing.	
80	120	0 - 10 0 - 8 0 - 7	84	3	10	6	4	9	5	4			

Ø The tolerance of outside diameter deviation Δ_{Ds} applicable to classes 4 and UP is the same as the tolerance of single plane mean outside diameter deviation Δ_{Dmp}.

I Init: u m

Accuracies of HT type

Table 13.10 Inner rings

Nomina diam d	al bore eter /	Single plane mean bore diameter deviation Δd_{mp}							Sing di	le radia ameter	I plane variatio	bore on	Mean bore diameter deviation <i>Vd</i> mp			Inner ring radial runout <i>K</i> ia			
m r over	m incl.	Cla high	ss 5 Iow	Clas high	s 4 1 low	Clas high	ss 2 🛈 Iow	Diam Class 5	eter se Class 4 max	ries 9 Class 2	Diame Class 5	eter ser Class 4 max	ies 0,2 Class 2	Class 5	Class 4 max	Class 2	Class 5	Class 4 max	Class 2
2.5	10	0	- 5	0	- 4	0	- 2.5	5	4	2.5	4	3	2.5	3	2	1.5	4	2.5	1.5
10	18	0	- 5	0	- 4	0	- 2.5	5	4	2.5	4	3	2.5	3	2	1.5	4	2.5	1.5
18	30	0	- 6	0	- 5	0	- 2.5	6	5	2.5	5	4	2.5	3	2.5	1.5	4	3	2.5
30	50	0	- 8	0	- 6	0	- 2.5	8	6	2.5	6	5	2.5	4	3	1.5	5	4	2.5
50	80	0	- 9	0	- 7	0	- 4	9	7	4	7	5	4	5	3.5	2	5	4	2.5
80	120	0	- 10	0	- 8	0	- 5	10	8	5	8	6	5	5	4	2.5	6	5	2.5
120	150	0	- 13	0	- 10	0	- 7	13	10	7	10	8	7	7	5	3.5	8	6	2.5
150	180	0	- 13	0	- 10	0	- 7	13	10	7	10	8	7	7	5	3.5	8	6	5
180	250	0	- 15	0	- 12	0	- 8	15	12	8	12	9	8	8	6	4	10	8	5

The tolerance of bore diameter deviation Δa_{d} , applicable to classes 4 and 2, is the same as the tolerance of mean bore diameter deviation Δd_{mp} . This applies to the diameter series 0.2 for class 4, and all the diameter series for class 2.

2 Applicable to individual bearing rings manufactured for duplex bearings.

Table 13.11 Outer rings

Nominal diam D	outside eter	e Single plane mean outside diameter deviation Δ <i>D</i> mp							Single di neter se	e radial ameter V eries 9	plane o deviatio Dp Diame	utside on ter ser	Mean outsi d	single de diar eviatio <i>VD</i> mp	plane neter n	Outer ring radial runout <i>K</i> ea			
mr	m	Cla	ass 5	Clas	s 4 🕄	Class	s 2 🕄	Class 5	Class 4	Class 2	Class 5	Class 4	Class 2	Class 5	Class 4	Class 2	Class 5	Class 4	Class 2
over	incl.	high	low	high	low	high	low		max			max			max			max	
18	30	0	- 6	0	- 5	0	- 4	6	5	4	5	4	4	3	2.5	2	6	4	2.5
30	50	0	- 7	0	- 6	0	- 4	7	6	4	5	5	4	4	3	2	7	5	2.5
50	80	0	- 9	0	- 7	0	- 4	9	7	4	7	5	4	5	3.5	2	8	5	4
80	120	0	- 10	0	- 8	0	- 5	10	8	5	8	6	5	5	4	2.5	10	6	5
120	150	0	- 11	0	- 9	0	- 5	11	9	5	8	7	5	6	5	2.5	11	7	5
150	180	0	- 13	0	- 10	0	- 7	13	10	7	10	8	7	7	5	3.5	13	8	5
180	250	0	- 15	0	- 11	0	- 8	15	11	8	11	8	8	8	6	4	15	10	7
250	315	0	- 18	0	- 13	0	- 8	18	13	8	14	10	8	9	7	4	18	11	7

O The tolerance of outside diameter deviation ΔDs, applicable to classes 4 and 2, is the same as the tolerance of mean outside diameter deviation ΔDmp. This applies to the diameter series 0.2 for class 4, and all the diameter series for class 2.

													U	nit: µ m
Fa w	ce rund vith bor	out e	Aک	cial run	out		,	Widt	h variati	on		Wid	th varia	ation
	$S_{ m d}$			Sia		Si	ngle b	earin	ıplex ıring ∕ 2	VBs				
Class 5	Class 4 max	Class 2	Class 5	Class 4 max	Class 2	Class 5 上	5 Class 4 下	CI 上	ass 2 下	Class st 上	5 Class 4 下	Class 5	Class 4 max	Class 2
7	3	1.5	7	3	1.5	0	- 40	0	- 40	0	- 250	5	2.5	1.5
7	3	1.5	7	3	1.5	0	- 80	0	- 80	0	- 250	5	2.5	1.5
8	4	1.5	8	4	2.5	0	- 120	0	- 120	0	- 250	5	2.5	1.5
8	4	1.5	8	4	2.5	0	- 120	0	- 120	0	- 250	5	3	1.5
8	5	1.5	8	5	2.5	0	- 150	0	- 150	0	- 250	6	4	1.5
9	5	2.5	9	5	2.5	0	- 200	0	- 200	0	- 380	7	4	2.5
10	6	2.5	10	7	2.5	0	- 250	0	- 250	0	- 380	8	5	2.5
10	6	4	10	7	5	0	- 250	0	- 300	0	- 380	8	5	4
11	7	5	13	8	5	0	- 300	0	- 350	0	- 500	10	6	5

								-		
Outside surface			Ax	ial runo	out	Width variation	Width variation			
SD			Sea			$\Delta C_{\rm S}$	VCs			
	Class 5	Class 4	Class 2	Class 5	Class 4	Class 2	All classes	Class 5	Class 4	Class 2
		шал			шал				шал	
	8	4	1.5	8	5	2.5	Identical to $\Delta B_{\rm s}$	5	2.5	1.5
	8	4	1.5	8	5	2.5	relative to d of the	5	2.5	1.5
	8	4	1.5	10	5	4	same bearing	6	3	1.5
	9	5	2.5	11	6	5		8	4	2.5
	10	5	2.5	13	7	5		8	5	2.5
	10	5	2.5	14	8	5		8	5	2.5
	11	7	4	15	10	7		10	7	4
	13	8	5	18	10	7		11	7	5

Unit: µ m

Accuracies of AXN and ARN type

Table 13.12 Inner ring and outer ring

Unit: µ													t: µ m										
Nomina bore	l bearing dia. <i>d</i> or	M	ean bo dev	ore dia. iation	0	Thrust i ring	nner 1 bore	Me	an out devi	side di ation	a. 🛛	Be h	earing eight	Oute w	er ring idth	Rac	lial ^① ring	Oute	er @ Ig	Outer ri outside s	ing ² surface	Thr inner r an	ust ing 1 id
nominal bearing		A dmp			dia. deviation		A Durn		deviation		deviation		radial runout		radial runout		inclination		outer ring thickness				
outside	e dia. D	Cla	<u>сс Б</u>	amp Cla	000 4		115	Cla	5 5		acc 4		115		ics	1	10		a		D	varia Sia.	tion Sea
		Cia	55 J	UI2	155 4			Cia	55 J	UI6	155 4					Class 5	Class 4	Class 5	Class 4	Class 5	Class 4	Class 5	Class 4
Over	Incl.	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	Ma	ax.	Ma	ix.	Ma	х.	Ma	ix.
18	30	0	- 6	0	- 5	+ 61	+ 40	-	-	-	-					4	3	-	-	-	-	3	2
30	50	0	- 8	0	- 6	+ 75	+ 50	-	-	-	-					5	4	-	-	-	-	3	2
50	80	0	- 9	0	- 7	+ 90	+ 60	0	- 9	0	- 7	0	- 370	0	- 130	5	4	8	5	8	4	4	3
80	120	-	-	-	-	-	-	0	- 10	0	- 8					-	-	10	6	9	5	4	3
120	150	-	-	-	-	-	-	0	- 11	0	- 9					-	-	11	7	10	5	5	4

1 To be found in accordance with the dimension class *d*. 2 To be found in accordance with the dimension class *D*.

(6) Basic preload and axial rigidity

Basic preloads of the ball screw support bearings, set for each bearing type, are shown in the dimensions tables. The preloads can be altered depending on the required rigidity. Contact NTN, in such a case. In the AXN and ARN types, rigidity is normally enhanced by tightening the thrust bearing rings on both sides to supply preload. Preloads and torques are shown in the dimensions tables to help the control of the basic preload. Bearing type that allows the acquisition of preset preload by tightening the bearing raceways to adjust the clearance A between the both thrust bearing rings and radial bearing rings (**Fig. 13.13**) is also available. For details, refer to NTN.

Axial rigidity of the 2A-BST type DB duplex arrangement and the AXN type at the basic preload are shown in **Figs. 13.14** and **13.15**.

Fig. 13.13

(Notes) Axial displacement is measured under standard preloaded.

Fig. 13.14 BST type rigidity chart

Fig. 13.15 AXN type rigidity chart

7 Fit and squareness of shoulders of shaft and housing

Recommended fit for each ball screw support type bearing and tolerance of shaft and housing shoulder squareness are shown in **Figs. 13.13** and **13.14**.

Table 13.13

Type code	Type and fit grade						
	Shaft outside diameter	Housing					
BST HT	h5	H6					
AXN ARN	j5	J6					

Table 13.14 Tolerance of shoulder squareness Unit: µ m

Diameter o	lassification	Type code							
over	incl.	BST	HT	AXN , ARN					
-	30	4	4	4					
30	80	4	4	5					
80	120	5	-	6					
120	180	-	-	7					

8 Applications

The 2A-BST type bearing is mainly used as the ball screw support bearing to be installed to a ball screw of the machine tool feed system, and two to four rows duplex arrangement is used in many cases. This type is popular because of its easy handling, and greased sealed angular contact ball bearings have been adopted recently. The back-to-back duplex

Fig. 13.16

Fig. 13.17

9 Starting torque of 2A-BST type

Starting torques (references) of the 2A-BST type are shown in **Tables 13.15** and **13.16**.

Table 13.15 Open type 2A-BST

	Starting torque (reference) N • mm { kgf • cm }							
	DF type	DFT type	DTFT type	DFTT type				
	DB type	DBT type	DTBT type	DBTT type				
2A-BST17X47-1B	175	245	355	275				
	{ 1.8 }	{ 2.5 }	{ 3.6 }	{ 2.8 }				
2A-BST20X47-1B	175	245	355	275				
	{ 1.8 }	{ 2.5 }	{ 3.6 }	{ 2.8 }				
2A-BST25X62-1B	305	420	615	470				
	{ 3.1 }	{ 4.3 }	{ 6.3 }	{ 4.8 }				
2A-BST30X62-1B	305	420	615	470				
	{ 3.1 }	{ 4.3 }	{ 6.3 }	{ 4.8 }				
2A-BST35X72-1B	380	510	755	590				
	{ 3.9 }	{ 5.2 }	{ 7.7 }	{ 6.0 }				
2A-BST40X72-1B	380	510	755	590				
	{ 3.9 }	{ 5.2 }	{ 7.7 }	{ 6.0 }				
2A-BST40X90-1B	960	1305	1930	1500				
	{ 9.8 }	{ 13.3 }	{ 19.7 }	{ 15.3 }				
2A-BST45X75-1B	430	580	860	665				
	{ 4.4 }	{ 5.9 }	{ 8.8 }	{ 6.8 }				
2A-BST45X100-1B	1165	1580	2340	1815				
	{ 11.9 }	{ 16.1 }	{ 23.9 }	{ 18.5 }				
2A-BST50X100-1B	1165	1580	2340	1815				
	{ 11.9 }	{ 16.1 }	{ 23.9 }	{ 18.5 }				
2A-BST55X100-1B	1165	1580	2340	1815				
	{ 11.9 }	{ 16.1 }	{ 23.9 }	{ 18.5 }				

10 Recommended specifications of lubrication

The ball screw support angular contact ball bearing 2A-BST type and HT type are generally lubricated with grease. (2A-BST LXL type with light-contact seal is packed with grease.) The AXN and ARN type bearings are generally lubricated with circulated oil.

Grease lubrication

Recommended brand of grease

Lithium-mineral oil base general purpose grease of which base oil viscosity is high (for example, Alvania Grease S2, Showa Shell Sekiyu).

Recommended grease filling amount 25% of the capacities shown in the dimensions

tables

• Recommended grease filling method Refer to 6. Handling of Bearing, 6-1 (1) Rinsing of bearings and grease filling) in the Technical Data section.

	St	ce)		
	DF type	DFT type	DTFT type	DFTT type
	DB type	DBT type	DTBT type	DBTT type
2A-BST17X47-1BLXL	215	295	420	355
	{ 2.2 }	{ 3.0 }	{ 4.3 }	{ 3.4 }
2A-BST20X47-1BLXL	215	295	420	355
	{ 2.2 }	{ 3.0 }	{ 4.3 }	{ 3.4 }
2A-BST25X62-1BLXL	365	510	745	570
	{ 3.7 }	{ 5.2 }	{ 7.6 }	{ 5.8 }
2A-BST30X62-1BLXL	365	510	745	570
	{ 3.7 }	{ 5.2 }	{ 7.6 }	{ 5.8 }
2A-BST35X72-1BLXL	460	610	900	705
	{ 4.7 }	{ 6.2 }	{ 9.2 }	{ 7.28 }
2A-BST40X72-1BLXL	460	610	900	705
	{ 4.7 }	{ 6.2 }	{ 9.2 }	{ 7.2 }
2A-BST40X90-1BLXL	1155	1570	2315	1805
	{ 11.8 }	{ 16.0 }	{ 23.6 }	{ 18.4 }
2A-BST45X75-1BLXL	520	695	1040	805
	{ 5.3 }	{ 7.1 }	{ 10.6 }	{ 8.2 }
2A-BST45X100-1BLXL	1400	1890	2815	2175
	{ 14.3 }	{ 19.3 }	{ 28.7 }	{ 22.2 }
2A-BST50X100-1BLXL	1400	1890	2815	2175
	{ 14.3 }	{ 19.3 }	{ 28.7 }	{ 22.2 }
2A-BST55X100-1BLXL	1400	1890	2815	2175
	{ 14.3 }	{ 19.3 }	{ 28.7 }	{ 22.2 }

Table 13.16 Light-contact sealed type 2A-BST LXL

Oil lubrication

• Recommended brand of oil

Hydraulic oil and oil for industrial and other purposes used for lubrication of sliding surfaces with viscosity grade ISO VG 68 or better is recommended.

Oiling quantity

Recommended oiling quantity depends on the lubricating methods. As for the circulated oiling, adjust the oiling quantity, referring to the guideline from 5 to 10 cm3/min.

NTN Ball Screw Support Bearings