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Commentary
Development of Remaining Useful Life Prediction
Technology for Rolling Bearings Under Flaking Progression

In recent years, due to aging equipment and the lack of maintenance personnel, there is increasing 
interest in advanced predictive maintenance, and rolling bearings are attracting attention as a target. In 
general, rolling bearings are replaced when some kind of damage occurs. However, in some cases where 
maintenance is not easy, they may continue to be used even after the damage has occurred as long as it 
does not a�ect peripheral equipment. This paper introduces a developing AI method for predicting the 
remaining useful life of rolling bearings under �aking progression.

1. Introduction

Interest is growing for enhanced functionality and 
automation of maintenance technologies amid the 
backdrop of increased maintenance costs due to 
long-term deterioration and the increasing burden 
on workers due to the lack of maintenance personnel 
in manufacturing, infrastructure and similar related 
equipment. In recent years much attention has 
been given to technology relating to “predictive 
maintenance”, a method which involves detecting 
abnormal signs of operation so that maintenance can 
then be performed. This method is more e�cient than 
“preventive maintenance”, which involves regularly 
maintaining equipment regardless of its condition or 
“corrective maintenance”, which involves maintaining 
equipment after a failure has occurred. NTN has 
increased activity in this area by introducing these 
technologies in maintenance using IoT and AI1).

Rolling bearings are machine elements that is vital 
to equipment and are a key element in supporting 
machine rotation. In cases of equipment failure, it 
is said that roughly 30 % of failures are caused by 
rolling bearings2). Based on this fact, it is desirable 
to estimate the condition of rolling bearings and 
repair or replace them at the proper time to reduce 
maintenance costs for the entire machine.

Vibration acceleration is often used to diagnose 
rolling bearings because it can be measured without 
interrupting the machine and is highly sensitive to 
damage3). Diagnostic methods that use vibration 
acceleration predict damage conditions using statistics 
such as the root mean square value and kurtosis, as 
well as specifying areas of damage using frequency 
analysis. There has been much recent activity in R&D 
development to predict the damage conditions and 
remaining useful life of rolling bearings in line with the 
development of AI technology such as deep  
learning4), 5), 6).

This paper introduces AI technology7) developed to 
predict remaining useful life up to when it is necessary 
to replace the bearings and is applicable to rolling 
bearings after damage has occurred.

2. Development background

Generally, the life of a rolling bearing is often 
considered to be when some type of damage occurs 
on the bearing raceway surface, such as �aking or 
indentation. However, depending on the environment 
and conditions in which the bearing is used, it is not 
easy to replace rolling bearings and these bearings 
may continue to be used even after minor damage 
has occurred because of the signi�cant maintenance 
costs involved.

If rolling bearing damage progresses, there will 
be a sudden increase in vibration, which will cause 
damage to the machine as well as other elements and 
will likely lead to increased downtime. Therefore, it is 
desirable to be able to predict the remaining useful 
life up to when the bearing needs to be replaced 
by estimating the extent of damage on the rolling 
bearing (hereafter, damage condition). However, most 
research into remaining useful life prediction of rolling 
bearings mentioned above does not describe the 
damage condition of rolling bearings.

Therefore, this paper will introduce the technology 
that was developed with the aim of predicting the 
remaining useful life with high accuracy, by expressing 
a regression model of the relationship between the 
damage condition and remaining useful life for rolling 
bearings where damage is in progress.
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3.  Flaking progress and vibration 
acceleration on rolling bearings

Fig. 1 shows the relationship between the operating 
time and vibration when using a cylindrical roller 
bearing. Operation continued until the circumferential 
length of �aking that occurred on the inner ring 
raceway surface exceeded the rolling element pitch 
length8). The horizontal axis shows the load count 
while the vertical axis shows the change relative to the 
root mean square (RMS) initial value of the vibration 
acceleration (RMS relative value). The �gure also 
shows an external view of the �aking on the inner ring 
raceway surface for a speci�c time. Flaking occurred 
at a load count of approximately 900 thousand times. 
Flaking on the raceway surface �rst develops mostly 
in the axial direction (range A in Fig. 1), and when the 
length of �aking in the axial direction reaches the rolling 
element contact length, �aking mostly progresses 
along the circumference after this (the direction in 
which the rolling element moves) (range B in Fig. 1). 
RMS increases quickly while �aking progresses in the 
axial direction, and while �aking mostly progresses 
along the circumference, RMS increases slower 
and �uctuations follow the same trend. As �aking 
progresses further, if the length of �aking along the 
circumference reaches the rolling element pitch length 
(range C in Fig. 1), RMS increases rapidly once again 
and the �uctuation range also increases.

When this type of vibration increases, displacement 
between the inner and outer rings of the rolling 
bearing increases the risk of exceeding the range of 
acceptable clearance for peripheral components, 
which will result in damage to the peripheral 
components. Consequently, it is best to stop 
operation before the �aking circumferential length 
reaches the rolling element pitch length. This study 
regarded the bearing replacement time to be when 
the circumferential �aking length reaches half of the 
rolling element pitch length.
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Fig. 1  Relationship between �aking progress and 
vibration acceleration8)

4.  Characteristics of development 
technology

This chapter describes the overview for development 
technology.

4.1 Development technology
Fig. 2 shows an overview of development technology. 

Development technology consists of a combination of 
Feature Fusion Network (FFN)7) as indicated in section 
4.2 and Hierarchical Bayesian Regression, HBR9) as 
indicated in section 4.3. Using a short time Fourier 
transform (STFT) (see Fig. 3)10) spectrogram to input 
vibration acceleration time series data, FFN can predict 
maximum circumferential �aking length (hereafter, 
�aking size) and remaining useful life (hereafter, SS 
remaining life) as a snapshot (a single output for a 
single input data set). Next, from the �aking size and 
SS remaining life predicted by FFN, HBR can be used 
to output the remaining useful life regression equation, 
remaining useful life and its distribution.
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Fig. 3 Illustration of short time Fourier transform
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4.2 Feature Fusion Network
FFN is a regression method based on a convolutional 

neural network (CNN)11) in deep learning and is often 
used for image recognition. Fig. 4 shows an illustration 
of FFN. Normal CNN directly predicts corresponding 
objective variables just from data input at the time of 
the measurement. FFN calculates a deterioration index 
(a normalized index in a range of 0 to 1 for the state of 
deterioration) at each point in time from data input from 
multiple times in the past. The deterioration index is 
then vectorized with a measured permutation to create 
a deterioration index vector, which is then used as an 
intermediate variable with the aim of improving the 
prediction accuracy of the objective variables (�aking 
size and SS remaining useful life).
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Input data
(Measurement point + past)

Feature vector

Input data
(Measurement point)

Fig. 4 Feature fusion network overview

4.3 Hierarchical Bayesian regression
Since the previously mentioned SS remaining useful 

life is predicted with a snapshot, the predicted value 
changes for each measurement time. In practical use, 
the regression curve for remaining useful life is de�ned 
by a monotonically decreasing function because it 
is preferable for the remaining useful life predicted 
value to monotonically decrease as operating time 
elapses. In addition to the above, HBR was used7) as 
a method to consider variations between individual 
bearings during this development. HBR uses all past 
data before the measurement point to obtain the 
remaining useful life and regression curve. More 
speci�cally, di�erences in individual bearings are 
assumed to vary based on a probability distribution 
so that individual remaining useful life regression 
curves can be handled for each bearing. This enables 
relatively accurate predictions for remaining useful life 
output at the end, even for individual bearings whose 
SS remaining useful life greatly deviates from the 
average obtained from all learned data.

5. Evaluation test

5.1 Test equipment and measurement data
A schematic drawing for test equipment used to 

evaluate development technology is shown in Fig. 5, 
while test conditions are shown in Table. 17). A cylindrical 
roller bearing (number NU224, bore diameter 120 mm, 
outer diameter 215 mm) was used as the test bearing. 
Operation continued until the bearing reached its limit 
of use after the initial �aking that occurred on the 
bearing raceway surface, and both vibration acceleration 
and �aking size were measured at regular intervals. 
Measurements were taken for a sample of 33 bearings. 
Fig. 6 shows the relationship between the operating 
time and RMS from when the initial �aking occurred on 
each bearing sample until the bearing reached its limit of 
use. Fig. 7 shows the relationship between the operating 
time and �aking size. At the end of �aking progress, 
RMS �uctuated signi�cantly, and this made it di�cult 
to accurately know the �aking conditions. Despite the 
fact that all 33 bearing samples were tested under the 
same operating conditions, the remaining useful life, up 
to when the bearing limit of use was reached, di�ered 
signi�cantly among the bearing samples. Therefore, in 
order to improve the accuracy of predicting remaining 
useful life, it is necessary to consider �uctuations in 
feature quantities of vibration acceleration as well as 
individual di�erences in remaining useful life.

Vibrational acceleration
sensor Rolling bearing

Housing

Spindle

Load

Fig. 5 Test equipment7)

Table 1 Test conditions7)

Rolling bearing Cylindrical roller bearing (number: NU224)
Main shaft 
rotational speed 500 min-1

Radial load 90 kN
Measurement 
data Vibration acceleration (vertical direction)

Bearing sample
quantity 33 pieces
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5.2 Evaluation metrics
The coe�cient of determination R2 was used in the 

evaluation metrics of the development method. R2 is 
an indicator of the degree to which a predicted value 
of the objective variables (�aking size or remaining 
useful life in this case) matches the actual value 
(hereafter, true value), and is shown in equation (1) 
below.

R2 = 1 － 
Σ n

k −1(yk−ŷk)
2

Σ n
k =1(yk−y)2 (1)

Here, yk and ŷk denote the true value and predicted 
value of the objective variables at measurement time k,  
respectively. Furthermore, y denotes the true value 
average of the objective variables while n denotes the 
number of data. R2 can be a value of 1 or less, and the 
larger the value (closer to 1), the higher the prediction 
accuracy. R2 was calculated for each bearing sample, 
and both the average and variation of predicted values 
calculated using leave-one-out cross-validation12) 
were evaluated. Furthermore, the whole range, 
from when �aking occurred until it was necessary 
to replace the bearing, was divided into two ranges 
which were the early stage and late stage. Both of 
these stages were evaluated. Here, the range in which 
�aking mostly progressed in the axial direction was 
taken to be the early stage, while the range in which 
�aking progressed along the circumference was taken 
to be the late stage.

5.3  Flaking size and SS remaining useful life 
prediction results using FFN

This section provides a comparison of FFN with the 
various regression methods and evaluates the accuracy 
of predicting �aking size and SS remaining useful life. 
Kernel Ridge (KR)13), Random Forest (RF)14), Support 
Vector Regression (SVR)15), Neural Network (DNN)16) 
with 4 hidden layers, and CNN were used as comparison 
methods. Similar to the development method, CNN 
inputs the vibration acceleration spectrogram and does 
not consider past data. Moreover, for KR, RF, SVR and 
DNN, statistics in the time domain, frequency domain 
and cepstral domain (RMS, maximum value, peak factor, 
kurtosis, skewness, RMS after envelope processing17)) 
were used as inputs after various band pass �ltering were 
applied to vibration acceleration. Hyper-parameters of 
the development method and comparison methods 
were then selected as optimal values using 5-fold cross-
validation12).

Fig. 8 shows a box plot of comparison results for the 
accuracy of predicting �aking size, while Fig. 9 shows 
a box plot of comparison results for the accuracy of 
predicting SS remaining useful life.
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Fig. 8 Flaking size prediction accuracy (w/o HBR)7), 17)
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Fig. 9  SS remaining useful life prediction accuracy  
(w/o HBR)7), 17)

All four methods, excluding KR and DNN, had 
an average R2 of 0.7 or higher for the �aking 
size prediction during the early stage of �aking 
progression. In particular, FFN prediction accuracy 
had the highest value. Additionally, the average R2 
for CNN and FFN was high during the late stage of 
�aking progression. However, because CNN prediction 
accuracy worsened for speci�c samples, on average 
CNN was signi�cantly lower than FFN. Therefore, FFN 
has the highest prediction accuracy for predicting the 
�aking size.
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The three methods DNN, CNN and FFN have a high 
R2 for the SS remaining useful life prediction during 
the early stage of �aking progression compared with 
KR, RF and SVR. Among these three methods, FFN 
had the highest prediction accuracy. All methods had 
a lower prediction accuracy during the late stage of 
�aking progression compared with the early stage of 
�aking progression. However, RF and the development 
method maintained a comparatively high accuracy 
out of all the methods.

Based on these results, we can see that FFN 
maintains a high prediction accuracy for both �aking 
size and SS remaining useful life in comparison with 
the other general regression methods.

5.4  Remaining useful life curve using the 
development method

Fig. 10 shows the relationship for the median and 
prediction distribution of the remaining useful life 
curve and damage progression using HBR. In this 
�gure, measured data in the range used for HBR 
learning is shown to the left of the red dotted line. 
Measured data in the prediction range is shown to 
the right of the red dotted line. The black line shows 
the prediction curve using HBR. Furthermore, the 
dark grey area shows a 50 % level of con�dence 
range while the light grey area shows a 95 % level of 
con�dence range. The three graphs in the �gure show 
prediction results for remaining useful life at points 
where 10 %, 20 % and 50 % data was measured out 
of all measurement data for the bearing from the left, 
respectively. A dashed line is also shown in the �gure 
to represent the limit of use (life criteria) as de�ned 
in chapter 3. The prediction curve approaches the 
true value and the range for the level of con�dence 
became narrower as measurement data increased 
with the progression of damage. Therefore, the 
relationship between remaining useful life and damage 
progression using HBR can be expressed as a curve 
with a prediction distribution (reliability of predicted 
values). Furthermore, increasing measurement data 
improved the remaining useful life prediction accuracy 
and increased the reliability of the predicted value.

Fig. 11 shows a box plot of remaining useful life 
prediction accuracy due to the development method 
(the combination of FFN and HBR). For comparison, 
the �gure shows the prediction results for RF and HBR 
combined, CNN and HBR combined, and FFN by itself. 
During the damage early stage, the development 
method has improved accuracy in comparison with 
the other methods. In particular, the interquartile 
range becomes smaller, con�rming that variation in 
the bearing sample is smaller. This method also has 
a high prediction accuracy compared with the other 
methods during the damage late stage, with the 
only average R2 exceeding 0.5. Therefore, using the 
development method can predict remaining useful life 
with high accuracy more than conventional methods.
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Fig. 10  Relationship between �aking progression  
and remaining useful life prediction distribution7)
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Fig. 11 Remaining useful life prediction accuracy7)

6. Summary

This paper compared and veri�ed general machine 
learning methods and their performance for a 
remaining useful life prediction method developed to 
target rolling bearings after damage has occurred. It 
con�rmed that using the development method can 
predict the remaining useful life with high accuracy 
until the time the rolling bearing needs to be replaced 
after damage has occurred. Therefore, use of this 
development method enables us to obtain a guideline 
for using rolling bearings in the range where the 
displacement between the inner and outer rings does 
not exceed the acceptable clearance for peripheral 
components even when operation is continued after 
�aking has occurred on a rolling bearing. Equipment 
such as pumps and fans used in special environments 
are an example of equipment that continue to be 
used even after the rolling bearings are damaged. In 
the future, NTN will continue working on increasing 
the versatility of this development technology while 
contributing to the reduction of maintenance costs on 
various equipment.
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