High-carbon chromium bearing steel is used for needle rollers. The needle rollers ar ground and polished after heat treatment. The surface hardness is HRC 60 to 65.

Needle rollers are provided as rolling elements or pins for operation directly on the shaft.

1. Shape of needle rollers

The standard shape of needle rollers has a flat surface on its end face (referred to as F type). Crowned contact surfaces are also available (suffix code: E) and can reduce the edge load on the rollers. Excessive edge load on rollers can result in premature failure. Contact NTN Engineering for more information.

Table 1 End face shape

Туре	Designation	Shape
F	Flat surface	

2. Needle roller part number composition

The needle roller part number is composed of a model code (end face type), a dimension code [diameter (D_w) x length (L_w)], and a suffix code (see Fig. 1).

Fig. 1

1) For HL, contact NTN Engineering.

3. Accuracy of needle rollers

NTN

The dimensional accuracy of needle rollers is maintained in accordance with JIS B 1506 (Rolling bearings-Rollers) (see Table 2).

Table 2	Accuracy	of needle rollers	Unit: µm
---------	----------	-------------------	----------

Characteristics	Tolerance and tolerance values	
Tolerance of average value of diameter $D_{ m w}$	0 to -10	
Mutual tolerance of lot diameter $D_{ m W}$ (max.)	2	
Roundness of diameter $D_{ m W}$, diameter variation in flat surface	1.0 $(L_{\rm W} / D_{\rm W} \le 6)$ 1.5 $(L_{\rm W} / D_{\rm W} > 6)$	
Tolerance of length $L_{\rm w}$	h13	
Accuracy class	Class 2	

Needle rollers are separated into groupings of 2 μ m ranges based on the diameter of the roller and are separately packaged to maintain consistency between supplied rollers. Depending on the tolerance range, the needle rollers are classified by label colors such as red, black, and blue, and then delivered. Bearing rollers in packages having different

label colors must not be mixed.

Table 3 Diameter dimensional tolerance and classification of needle rollers

Label color Tolerance range (µm)		Classification
Red	0 to -2	
Navy	-1 to -3	
Blue	-2 to -4	Standard
Black	−3 to −5	
White	-4 to -6	
Gray	-5 to -7	
Green	-6 to -8	Culturate and a set
Brown	–7 to –9	Sub standard
Yellow	-8 to -10	

4. Application of needle rollers

When a full compliment needle roller bearing is made with a standard needle roller, the shaft diameter (d), the housing bore diameter (D), the circumferential clearance (Δ_C), and the radial internal clearance (Δr) are calculated from the needle roller diameter (D_w) and the number of rollers (Z) (see Fig. 2).

The minimum value of the circumferential clearance (Δ_C) is calculated by formula (1). The radial internal clearance (Δr) is selected based on the shaft diameter and the usage conditions using section "E. Needle roller bearings 2.4 Solid type needle roller bearings Table 9 (E-7)" as guidance. Full complement needle roller bearings generally require a larger radial inner clearance than a needle roller bearing with cage.

$\Delta_C = (0.005 \text{ to } 0.020) \times Z \text{ mm}$	
(minimum value) ·····	(1

The minimum value of the housing bore diameter (D) and the maximum value of the shaft diameter (d) are calculated from formula (2) and formula (3), respectively.

$D = \frac{1}{\sin\left(\frac{\pi}{Z}\right)} \cdot \left(D_{\rm w} + \frac{\Delta_C}{Z}\right) + D_{\rm w}$	mm
(minimum value)	

 $d = D - 2D_{\rm W} - \Delta r \, {\rm mm}$ (maximum value) (3)

In order to retain the needle rollers in the housing using the keystone method, the maximum value of the housing bore diameter (D) is calculated from the minimum value of the roller diameter $(D_{w \min})$ and the number of rollers (Z) using formula (4) (see Fig. 3). Factor K is shown in Table 4.

 $D = K \cdot D_{\text{wmin}} \text{ mm (maximum value)} \cdots (4)$

Fig. 3

Table 4 Values of factor K

Ζ	K	Ζ	K
8	3.6763333	17	6.4536463
9	3.9709394	18	6.7689303
10	4.2727719	19	7.0846088
11	4.5789545	20	7.4006100
12	4.8879667	21	7.7168786
13	5.1989251	22	8.0333713
14	5.5112799	23	8.3500534
15	5.8246707	24	8.6668970
16	6.1388508	25	8.9838796

NTN

D-24

(2)

Needle Rollers

F type

d 1.5–4.5 mm

Rolling Bearing Iccessories

	Boundary dimensions mm		Number	Mass kg (approx.)		B diı	oundary mensions mm
1	$D_{\rm w}$	$L_{\rm w}$	Flat type	pieces		$D_{\rm w}$	$L_{\rm w}$
		5.8	F1.5×5.8	0.080			11.8
		6.8	F1.5×6.8	0.090			13.8
1	15	7.8	F1.5×7.8	0.104			15.8
		9.8	F1.5×9.8	0.131			17.8
		11.8	F1.5×11.8	0.159			19.8
		13.8	F1.5×13.8	0.186		3.5	21.8
							23.8
		6.8	F2×6.8	0.158			25.8
		7.8	F2×7.8	0.183			29.8
		9.8	F2×9.8	0.232			31.8
	_	11.8	F2×11.8	0.281			34.8
	2	13.8	F2×13.8	0.330			
		15.8	F2×15.8	0.379			13.8
		17.8	F2×17.8	0.428		4	15.8
		19.8	F2×19.8	0.477			17.8
							19.8
		7 9	E2 5 X 7 8	0.284			21.8
		9.8	F2 5×9 8	0.264			23.8
		11.8	F2 5×11 8	0.438			25.8
		12.0	E2 5×12 8	0.438			27.8
2		15.0	E2 5×15 8	0.514			29.8
-		17.8	F2 5×17 8	0.668			31.8
		19.8	F2 5×19 8	0.745			34.8
		21.8	F2 5×21 8	0.821			37.8
		23.8	F2.5×23.8	0.898			39.8
		2010	1 210 2010	0.050			
		0.9		0 556			17.8
		9.8	F3^9.0	0.550			19.8
		11.0	F3^11.0 E2×12.0	0.071			21.8
		15.0	F3×13.0	0.764			23.8
		17.0	E2X17 0	1.057			25.8
	3	19.8	F3×10.8	1.01		4.5	29.8
		21.8	F3X21.8	1.12			31.8
		23.8	F3X23.8	1.25			34.8
		25.8	F3×25.8	1.54			37.8
		27.8	F3X27.8	1.56			39.8
		21.0	1 5. 2710	1.50			44.8

Boundary dimensions mm		Number	Mass kg (approx.)
$D_{\rm w}$	$L_{\rm w}$	Flat type	1 000 pieces
	11.8	F3.5×11.8	0.849
	13.8	F3.5×13.8	1.00
	15.8	F3.5×15.8	1.15
	17.8	F3.5×17.8	1.30
	19.8	F3.5×19.8	1.45
3.5	21.8	F3.5×21.8	1.60
	23.8	F3.5×23.8	1.75
	25.8	F3.5×25.8	1.90
	29.8	F3.5×29.8	2.20
	31.8	F3.5×31.8	2.35
	34.8	F3.5×34.8	2.58
	13.8	F4×13.8	1.27
	15.8	F4×15.8	1.50
	17.8	F4×17.8	1.70
	19.8	F4×19.8	1.89
	21.8	F4×21.8	2.09
	23.8	F4×23.8	2.26
4	25.8	F4×25.8	2.48
	27.8	F4×27.8	2.68
	29.8	F4×29.8	2.87
	31.8	F4×31.8	3.07
	34.8	F4×34.8	3.31
	37.8	F4×37.8	3.62
	39.8	F4×39.8	3.82
	170	E4 EX17 0	2 1 1
	19.8	F4.5^17.0	2.11
	21.8	F4.5×21.8	2.50
	23.8	F4 5×23 8	2.01
	25.8	F4 5×25.8	3 1 1
4.5	29.8	F4.5×29.8	3.62
	31.8	F4.5×31.8	3.87
	34.8	F4.5×34.8	4.25
	37.8	F4.5×37.8	4.63
	39.8	F4.5×39.8	4.88
	44.8	F4.5×44.8	5.51

d 5 mm

Boundary dimensions mm		Number	Mass kg (approx.) 1 000
$D_{\rm w}$	$L_{\rm w}$	Flat type	pieces
	19.8	F5×19.8	2.89
	21.8	F5×21.8	3.20
	23.8	F5×23.8	3.52
	25.8	F5×25.8	3.82
-	29.8	F5×29.8	4.45
э	31.8	F5×31.8	4.74
	34.8	F5×34.8	5.11
	37.8	F5×37.8	5.55
	39.8	F5×39.8	5.85
	49.8	F5×49.8	7.33

